Renal Fanconi syndrome: taking a proximal look at the nephron.

نویسندگان

  • Enriko D Klootwijk
  • Markus Reichold
  • Robert J Unwin
  • Robert Kleta
  • Richard Warth
  • Detlef Bockenhauer
چکیده

Renal Fanconi syndrome (RFS) refers to the generalized dysfunction of the proximal tubule (PT) (Kleta R. Fanconi or not Fanconi? Lowe syndrome revisited. Clin J Am Soc Nephrol 2008; 3: 1244-1245). In its isolated form, RFS only affects the PT, but not the other nephron segments. The study of isolated RFS can thus provide specific insights into the function of the PT. In a recent paper, Klootwijk et al. investigated one such form of isolated RFS and revealed the underlying molecular basis (Klootwijk ED, Reichold M, Helip-Wooley A et al. Mistargeting of peroxisomal EHHADH and inherited renal Fanconi's syndrome. N Engl J Med 2014; 370: 129-138). The affected family had been described previously, demonstrating the typical features of RFS, such as low-molecular weight proteinuria, aminoaciduria, glycosuria and phosphaturia with consequent rickets; yet, importantly, patients had no evidence of impaired glomerular filtration (Tolaymat A, Sakarcan A, Neiberger R. Idiopathic Fanconi syndrome in a family. Part I. Clinical aspects. J Am Soc Nephrol 1992; 2: 1310-1317). Inheritance was consistent with an autosomal dominant mode. Klootwijk et al. discovered a surprising explanation: a heterozygous missense mutation causing partial mistargeting of the peroxisomal enzyme EHHADH to the mitochondria. Notably, disease causing was not the absence of the enzyme in the peroxisome, but its interference with mitochondrial function. The discovery of this novel disease mechanism not only confirmed the importance of mitochondrial function for PT transport, but also demonstrated the critical dependence of PT on fatty acid metabolism for energy generation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membrane permeability as a cause of transport defects in experimental Fanconi syndrome. A new hypothesis.

The injection of sodium maleate (200-400 mg/kg) into rats produces aminoaciduria along with glycosuria and phosphaturia, resembling the Fanconi syndrome. This experimental model was studied by means of microinjections into proximal convoluted tubules of the kidney, stop-flow diuresis, and microperfusion of single nephrons. Our results show that, in maleate-treated rats, competition between amin...

متن کامل

The urinary proteome in Fanconi syndrome implies specificity in the reabsorption of proteins by renal proximal tubule cells.

Polypeptides present in the glomerular filtrate are almost completely reabsorbed in the first segment of the proximal tubule by receptor-mediated endocytosis; in renal Fanconi syndrome (FS), there is failure to reabsorb many of these polypeptides. We have compared the urinary proteomes in patients with Dent's disease (due to a CLC5 mutation), a form of FS, with normal subjects using three diffe...

متن کامل

Effect of heavy metals on, and handling by, the kidney.

Heavy metals such as cadmium (Cd), mercury (Hg), lead (Pb), chromium (Cr) and platinum (Pt) are a major environmental and occupational hazard. Unfortunately, these non-essential elements are toxic at very low doses and non-biodegradable with a very long biological half-life. Thus, exposure to heavy metals is potentially harmful. Because of its ability to reabsorb and accumulate divalent metals,...

متن کامل

Proximal renal tubular acidosis: a not so rare disorder of multiple etiologies

Proximal renal tubular acidosis (RTA) (Type II RTA) is characterized by a defect in the ability to reabsorb HCO(3) in the proximal tubule. This is usually manifested as bicarbonate wastage in the urine reflecting that the defect in proximal tubular transport is severe enough that the capacity for bicarbonate reabsorption in the thick ascending limb of Henle's loop and more distal nephron segmen...

متن کامل

How Bartter's and Gitelman's syndromes, and Dent's disease have provided important insights into the function of three renal chloride channels: ClC-Ka/b and ClC-5.

Chloride channels are expressed in almost all cell membranes and are potentially involved in a wide variety of functions. The kidney expresses 8 of the 9 chloride channels of the ClC family that have been cloned so far to date in mammals. This review focuses on the pathophysiology of two renal disorders that have contributed recently to our understanding of the physiological role of chloride ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association

دوره 30 9  شماره 

صفحات  -

تاریخ انتشار 2015